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wa fch/hg/.
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I’ve written books, about the sky, of course.
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And a PhD thesis about climate change in the Arctic.

Conclusion: jet stream winds and storm tracks are the major factors.
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SCIENCE

Jack Eddy,
1931-2009

The Maunder Minimum

The reign of Louis X1V appears to have been a time of
real anomaly in the behavior of the sun.

It has long been thought that the sun is
a constant star of regular and repeatable
behavior. Measurements of the radiative
output, or solar constant, scem to justify
the first assumption, and the record of
periodicity in sunspot numbers is taken
as evidence for the second. Both rec-
ords, however, sample only the most
recent history of the sun,

When we look at the longer record—of
the last 1000 years or so—we find in-
dications that the sun may have under-
gone significant changes in behavior,
with possible terrestrial effects. Evi-

John A. Eddy

The Sunspot Cycle

Surely the best-known features of the
sun are sunspots and the regular cycle of
solar activity, which waxes and wanes
with a perniod of about |1 years, This
cycle is most often shown as a plot of
sunspot number (Fig. I)—a measure of
the number of spots seen at one time on
the visible half of the sun (/). Sunspot
numbers are recorded daily, but to illus-
trate long-term cffects astronomers more
often use the annual means, which
smooth out the short-term variations and

zero. In contrast, in the years around a
sunspot maximum there is seldom a day
when a number of spots cannot be seen,
and often hundreds are present.

Past counts of sunspot number are
readily available from the year 1700 (3),
and workers in solar and terrestrial stud-
ies often use the record as though it were
of uniform quality. In fact, it is not, Thus
it is advisable, from time to time, to
review the origin and pedigree of past
sunspot numbers, and 10 recognize the
uncertainty in much of the carly record.

A Brief History

Dark spots were scen on the face of
the sun at least as early as the 4th cen-
tury B.C. (), but it was not until after
the invention of the telescope, about
1610, that they were seen well enough to
be associated with the sun itself. It
would secem no credit to carly astrono-
mers that over 230 years elapsed be-
tween the telescopic “discovery'' of sun-
spots and the revelation of their now
obvious cyclic behavior. In 1843, Hein-
rich Schwabe, an amateur, published a
brief paper reporting his own observa-
tions of spots on the sun for the period

A NEW SUN
The Solar Resulis
From




The Sun is an ordinary star, Smack-dab in the
center of the Hertzsprung-Russell diagram
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But the sun is still an exciting place
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Sunspots
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Another curious 22-year solar cycle
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FIGURE 1.2 The approximate number of sun/weather/climate publications each year
from 1850 to 1992 are shown (1,908 total). Note the initial surge of publications after
1870 followed by a decline around 1900. Since then, the increase in publications has
remained almost steady. Two thousand papers represent less than 0.25% of the scien-
tific literature published each year; so the sun/climate field remains relatively small.
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Pre-Galileo records of big sunspots visible to the
unaided eye through dusty sunsets were recorded in
China one or two thousand years ago.



Post-Galileo record of a big sunspot visible to the
unaided eye through a smoky sunset recorded in
Colorado ten years ago.




Proxies: Sunspot counts correlate with isotopes of
Beryllium 10, Carbon 14, etc., found in trees, ice
cores, ocean sediments, etc.

These indicate the Sun now (AD 2000) is brighter
than any time in the past 600 (or 1000?) years
More later.
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Do Sunspots make the Sun darker ?




Dark spots become hot spots at different
wavelengths and heights in the solar atmosphere.
So more sunspots = brighter, hotter Sun

03 July 1991: 104 Ca K image

Scurce: National Sclar Observatory (J. Harvey) . HAOD A-GO2



Even though
sunspots are cooler
than the rest of the
Sun’s surface, the

Sun Is hotter SN
overall when there —ENe=2

are more spots. — R




Other solar-type G2 stars vary similarly:
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Climate
of the past millennium

- the cold facts
recorded by ice, trees, people.



"A change in our climate however is taking place very sensibly.
Both heats and colds are become much more moderate within
the memory even of the middle-aged.

Snows are less frequent and less deep.”

—Thomas Jefferson, Notes on the State of Virginia, 1781
Noting the warming since 1700.
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The sfar'y in ice - élaaer Ba y A/aska




Glacier Bay,
Alaska.

Alaskan glaciers
have been
shrinking since
the 1700's

EXPLANATION
1 Modern glaciers

18gs — Date and position
of glacier termyinws

74




The glacier retreats slowly at first,
then more quickly around 1900 -
then levels off at a smaller size.

Retreat of Glacier Bay's Glaciers:
miles from original position in 1750
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What happens to a small glacier
when the climate changes?
Here's a lab model:




The ice cube melts slowly at first, but more
and more quickly until it's gone - just like a
big glacier, but quicker.

Melting of Ice Cubes (by volume)
1200
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Hours out of the Freezer



For an ice cube, the maximum rate of melt
occurs hours after the climate changes!

Glaciers are millions of times bigger than ice cubes.
Hours to an ice cube corresponds to centuries for a glacier.

Therefore, the rapid retreat of glaciers around 1900 is likely
due to a climate changes around 1700.



Another:

The Great
Aletsch
Glacier in
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The Aletsch has been retreating since 1800,
just like Glacier Bay glaciers.
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Fig. 2: Fluctuations of the Grear Aletsch Glacier during the last 2000 yvears reconstructed with
historical documents and dendrochronologically/absolutely dated fossil wood. Average mass

balance calculated for time intervals of 50 vears {on top) and of 100 years {below).

The Aletsch also retreated around 700 and 1400 A.D.
- and GREW around 500, 1200 and 1600 A.D.

This means glaciers are currently retreating from a
climate warming that occurred around 1700 - 1800.
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The glacier retreat of the past 200 years is the most
recent of glacier retreats.

Note evidence of ~200 and ~1000 year cycles.



Juneau Ice Field, Alaska







3cm Lichens are 3 centuries old
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The camp area was covered with ice
300+ years ago, then melted clear .
That’s when the lichens started growing.
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Much evidence points to a cool global
climate, 1400-1800 AD.
So about the warm before the cool...

Large Displacement of the Upper Treeline Limit

(Ecotone) in the Polar Ural Mountains
(Shiyutey, 2008 PAGES Nens, vl 11 o0, 1, S 18)

Mainly the open forests populated by Siberian larch (Larix sibirica)
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The human story: Vikings moved to a mild
Greenland around 1000 AD, stayed and made
beer for 350 years, then disappeared.

Ehemgeons and Deagone’ Player's Handhook.
hed by Wizands of the Coavt *




First, Eric the
Red, followed by
many more
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Then (left
and now
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The Vikings
enjoyed
Greenland
during the
Medieval Warm
Period

THE MEDIEVAL WARM PERIOD

WARMER
CA.1000. VIKINGS AT CA.1350. THE "WESTERN"
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Warm

Cold

Piecing it all together...

The
Little Ice Age

Vikings Jeffergon

Lichens
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Two versions of the past 1000 years

Was the MWP warmer or cooler thar
present ?

Most histories (based on trees, ice,
coral, silt, historical records) have @ -
the MWP a bit warmer than present. —— oucion(AD TR0

instrumental data (AD 1602-1668)
..... calibraton parod (AD 1902+1980) moan

roconsttuction (40 year smoothod)
—-—— lingar frend (AD 1000-1650)

Temperature Ancomaly (deg C)
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What caused it ? Ask a tree.
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Figurce 3. Random sclection of 14 data scets at aa time without duplicates, repeated 18
times, then overlaid, showing robustness of the pattern.





















Tree rings are affected by temperature, rainfall, and other factors
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What else do trees tell you ?
Trees rings are made out of, among other
stuff, Carbon — which has:
6 protons, 6 neutrons, 6 electrons
Air (Nitrogen) has 7, 7, 7

T oo R -




Alchemy: N, rtton
. oY
Zap some Nitrogen Nitrogen 14 G Neutron capture, gl
with a neutron, and
the Nitrogen becomes
a Carbon-14 isotope,
or 14C.

This becomes part of
a tree, along with
much more “normal” ¢ 'I'.-1 g demth. I|1irr'4||1| '| .' e
Carb()n ] b |1ln||lma~1II Yeta decay .;& Nitrogen 14
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Decay of Carbon 14
Fadiocactivity vs time
100

Years on, most of the
tree’s “C decays back
Into Nitrogen.
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Fercent of radioactivity
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0 Izmjim Iam[:;[m IBDDiDD 80000 100000 Measure the “C in the
Time (years) .
y tree today, and knowing

Lo

the decay rate of 4C, you
can tell

1. How old the tree Is
2. How much 14C it had
when it grew




Cosmic Rays




Cosmic Rays are very energetic sub-atomic
particles from black holes, quasars,
supernovas, and galaxies far, far away...

... that make Carbon-14

SUPERNOVA



Even though cosmic
rays come from other
galaxies, their
numbers are affected
by the Sun.
This, In turn, affects
the amount of
Carbon 14, or 1°C, in | _a&
the air (and trees).




The Sun shields the Earth from cosmic rays, and the
more active the Sun is, the more it shields us.
Active Sun (Solar Max) = fewer cosmic rays

Cosmic Rays

Solar Wind Termination Shock

/ Heliopause
~

Interstellar
Wind

Bow Shock

Cosmic Ray
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14C and other isotopes show 200 & 1000 year
solar cycles peaking around 2000 AD

—
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Jack Eddy's grand chart: Great correlations of
solar variability with the Medieval warm period and

the stages of the Little Ice Age.
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As with other solar type G stars, longer
cycles = dimmer star

nyer Sunspot Cycle Length Versus
e .S, Mean Annual Temperatures

Temp
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Cycle length (years)
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Another
Solar cycle —
Climate correlation
Fig. 15-8
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And another — there’s a lot more where
these came from.

SUNSPOT CYCLE LENGTH (years)
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Problem

The variations in solar brightness
are several times too small to cause
the observed 3 to 1 °C climate
variations.

We need a positive feedback - a
multiplier effect - that can increase
the Earth's response to solar
changes.



Reflected solar
radiation

Incoming solar
radiation
342 W m-2

Outgoing longwave
radiation
235 W m-2
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Reflected by
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and atmosphere
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atmosphere
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Radiation Balance of the Earth (Jeffrey T. Kichl)

Earth's energy budget
and feedbacks - the
short versions.

What else could be
involved ?

Atmospheric
wmdow

324
Back
radiation
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CLIMATIC CAUSE-AND-EFFECT (FEEDBACK) LINKAGES
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& diagram by Sellers shows the many cause-and-effect linkages that rmuost be
accounted for in a comprehensive climate model.




Our old friend,
Cosmlc rayS Yho you jivin' with

~ that Cosmik Debris ?

Frank Zappa Live
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Cosmic Rays pass through the atmosphere and make little
curvy tracks (twisted by magnetic fields) inside cloud
chambers. Little clouds made by little particles.
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Big clouds made by lots of little particles.
More cosmic rays (red) correlate with more oceanic
stratus clouds, like California coastal clouds (blue)
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Sun — Cosmic Ray cycle

Brighter Sun
» Fewer cosmic rays
» Fewer clouds
» More of the brighter sunlight heats
ground
» Hotter climate
» CR effect amplifies effect of the Sun



There's a pretty good statistical case for a Sun-
Climate connection.

The Medieval Maximum, Little Ice Age, and other
temperature cycles of the past 1000 years
correlate nicely with observed solar changes.

However, we're not sure how the small variations
in total solar irradiance (TSI) can cause such large
climate fluctuations.

Cosmic rays MIGHT be the mechanism.
So could Solar UV heating the stratosphere,
causing winds that work their way down to the
troposphere.



The Future
sn't what 1t
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Prediction is
very difficult,

especially \

about the
fyfure. /

: , Niels Bohr
— . Danish physicist
P (1885 - 1962)




My forecast from ten years ago, based on
N ~ 200 & 1000 year solar cycles
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Millennium-Scale Sunspot Number Reconstruction:
Evidence for an Unusually Active Sun since the 1940s

Ilya G. Usoskin®

Sodankvidgagophvsical Observatogy (O unit), Ugiversity of Oglu, EIN-90014 Oulu, Finlg
Now, the Grand.Seolar.Max of 2000...

Max-Plaack Institut filr Aeronomie, Katlenburg-Lindau, Germany

Kalevi Mursula and Katja Alanko
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FIG. 2 (color). Time series of the sunspot number as reconstructed from "“Be concentrations in ice cores from Antarctica (red)
and Greenland (green). The corresponding profiles are bounded by the actual reconstruction results (upper envelope to shaded
areas) and by the reconstructed values corrected at low values of the SN (solid curves) by taking into account the residual level of
solar activity in the limit of vanishing SN (see Fig. 1). The thick black curve shows the observed group sunspot number since 1610
and the thin blue curve gives the (scaled) '*C concentration in tree rings. corrected for the variation of the geomagnetic field [20].
The horizontal bars with attached arrows indicate the times of greal minima and maxima [21]: Dalton minimum (Dm), Maunder
minimum (Mm). Spdrer minimum (Sm), Wolf minimum (Wm), Oort minimum (Om). and medieval maximum (MM). The
temporal lag of "C with respect Lo the sunspot number is due to the long attenuation time for “C [19].



MY LIT L5 GUNTSPUL INUTTIVET FTCUILLIVIT (\IdyY LU 1Z)

2(

2015

2010

2005

2000

1995



Absence of the Corona at Eclipse

They are descriptions of the corona from
the eclipses of 1652, 1698, 1706, and
1708, the only contemporary firsthand
descriptions of the sun eclipsed that I
can find (66). They were written, in gen-
eral, by amateurs and nonconformists
who watched the spectacle with eyes
open to all of it. None describes the co-
rona as showing structure. Not one men-
tions the streamers which at every
eclipse in the present time are so easily
seen with the naked eye to stretch as
much as a degree or more above the so-
lar limb. All describe the corona as very
limited in extent: typically only 1 to 3 arc
minutes above the solar limb. In each
case the corona is described as dull or
mournful, and often as reddish. No draw-
ings were made. Every account is con-
sistent with our surmise of what the zodi-
acal light would look like at eclipse, were
the true corona really gone.

John A. Eddy

Kepler himself reported that at the
eclipse of 1604 (70): *‘The whole body of
the Sun was effectually covered for a
short time. The surface of the Moon ap-
peared quite black; but around it there
shone a brilliant light of a reddish hue,
and uniform breadth, which occupied a
considerable part of the heavens.” None
of these or any other descriptions that |
can find fit a rayed or structured corona;

No real corona during

the Maunder Min !!!

By 1715, the annual sunspot number
had reached 26 and was climbing. At the
eclipse of that year, at the end of the
Maunder Minimum, the corona is fairly
well described, and for the first time we
have drawings of it. For the first time dis-
tinct coronal structures are described
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