The psychology of risks and benefits

Paul Rozin

University of Pennsylvania

What do you see?

The 6-dot illusion

- The six dot illusion
- Why?
- Rule: Construct as few light sources as possible

Now what do you see?

The 6-dot illusion

- The six dot illusion
- Why?
- Rule: Construct as few light sources as possible
- The dot inversion demonstration
- Rule: Assume light source is overhead

The 6-dot illusion

- The six dot illusion
- Why?
- Rule: Construct as few light sources as possible
- The dot inversion demonstration
- Rule: Assume light source is overhead
- Overhead literally or away from earth center?
- The head inversion demonstration

Turn vour head upside down

Movement perception 1

- Computer demonstrations of phi phenomenon
- PHI2
- F1 Lower, F2 Raise interval
- F10 return to menu
- Look in peripheral vision
- The basic phenomenon: DEMO D1

Motion demonstration D1
 Alternation of screens 1 and 2: fraction of a second between screens: Apparent movement

Movement perception

- Ignored for a long time, illusions not of interest
- Use of phi in movies, signs
- Using an illusion to study the system

Movement perception 1

- Rule: if X1 disappears and X2 reappears QUICKLY in another location, assume X moved

Motion demonstration D1
 Alternation of screens 1 and 2: fraction of a second between screens: Apparent movement

Movement perception 1

- Rule: Disappearance interval must be short (fraction of a second).
- (Otherwise would have seen the movement)
- Demo D2 (overlap squares)
- Demo D3 (only one flashing)

Motion demonstration D2: Alternation of screens

 1 and 2 but 1 overlaps with 2.No movement perceived

Motion demonstration D3
1 on constantly, 2 blinks on and off: No movement perceived

Screen 2

Movement perception

- How does it work?
- The eye movement explanation
- When you move eyes to follow object, get sense of movement
- No: Moving eyes while looking at unmoving object
- D9

Motion demonstration D9: Screens alternate: simultaneous motion in opposite directions

Movement perception

- The eye -movement explanation
- Your eyes can't move in opposite directions at the same time!!

Movement Perception 3

- Rule: Create the simplest possible motion
- Rule: Construct as few objects as possible and conserve them as much as possible
- Rule: Construct motion to be as uniform as possible
- Demo D6 Bar

Motion demonstration D9: Screens alternate: Bar appears to fall and rise

Movement Perception 4

- Rule: Conserve object identity in movement, when possible
- Demo D7

Motion demonstration D7: Three dots moving together creates a triangle surface

Movement Perception 5

- Surface demonstrations
- Rule: Create surfaces to simplify movement: entities that move together are attached to the same surface
- Frame of reference and interpretation of motion

Movement Perception 6

- D5 sm/lg box

Motion demonstration D5

Alternation of screens. Create third dimension.
Box appears to be moving closer and further

Movement Perception 7

- Rule: Create third dimension to account for rapid change in size
- D14 midbar

Motion demonstration D14

Create third dimension. Green square appears to move in front of or behind red bar

Movement Perception 8

- Rule: Create third dimension to avoid collision (when no sign of collision)
- D15 T

Motion demonstration D15
Shape seems to rotate through the third dimension

Movement Perception 9

- Rule: Create third dimension to avoid unlikely shape distortion
- Complex situations
- D 16 Tbar

Motion demonstration D15
Shape seems to rotate through the third dimension

- Rule: Create third dimension and surface to create simple interpretation. Surface causes bar to flip into third dimension
- Developing a full set of rules
- Computer vision approximates human vision

Final demo of motion

- Hans Wallach movement demonstration
- HANS
- F1 change frame
- F10 stop
- Speed $=3$
- Illuminated dot on edge of a wheel rolling on a track: Appears to be a bouncing ball with no back motion
- Illuminate the center of the wheel with a dot, and same original dot seen as rotating around it, with clear backwards motion

Demonstration

- Even birthday $=\mathrm{E}$
- Odd birthday = O
- EVEN CLOSE EYES

O group

EVEN OPEN EYES ODD CLOSE EYES

E group

BOTH GROUPS OPEN EYES

Estimate how old this Woman is

Results of Age study f09 1

- Group O ages:
- Average:
- Group E ages:
- Average:

F08 Old or Young Lady Prime

Group n	Mean age estimate	Standard deviation
Old Prime	58.7	23.2
Young Prime	33.7	16.7

We see what we expect to see

Surviving

- Constructing a mental map of the world
- A map that is useful
- The map was useful in our ancestral environment
- The physical environment has changed drastically
- The social environment has changed drastically
- New importance of very small and very large numbers
- The educational environment has changed more slowly
- Science is a process, but is taught as a set of "facts" or "theories"
- Adaptive survival in $21^{\text {st }}$ Century: Understanding statistics, science etc.
- Not used to very small or very large numbers
- Rules or Heuristics
- Conditions where heuristics fail, sometimes described as biases
- Daniel Kahneman
- Amos Tversky
- Basic knowledge (e.g., gravity)
- Heuristics: Guiding principles
- Economics: Assumes full information available and rationality

Knowledge of probability

- Approximations
- Penn Freshmen: Ivy League
- About 90% know chance of getting three heads in three penny throws
- About 25% know chance of getting two heads in three penny throws

Risks and benefits

- Probabilities
- Paul Slovic
- Rate risks and benefits of modern technologies (e.g., nuclear power, genetic engineering, deep sea drilling)
- Lay people: risks negatively correlated with benefits
- Experts: risks positively correlated with benefits
- Must compare the two

Lack of understanding of science

- Penn freshmen. What does it mean that finding X is evidence for theory Y ?
- $>\mathbf{2 5 \%}$ use the words: "proof, prove"
- Idea of texture of evidence, converging methods
- How do you know? Course
- X is evidence for Y if X increases the probability that Y is correct

The Progress of Science

Lay Model

Actual Events

Generating "facts" or "claims"

Misinformation
 Natural preference

ers braced for cyclone 02A to hit ... nn ...ith ...inda of 1 nnL TL-

Bruce Ames on pesticides

Process vs Content: survey results from representative Americans ($0-100$ scale)

	\% reduction in natural		
Wolf			
German shepherd	12%		
Cocker spaniel	15%		
Wild animal with one gene insert	54%		

OCHA-CIDIL Project 2001-2002

- Claude Fischler, Paul Rozin and others
- Random telephone sample interviews
- 150 (phase 2) or 1000 (phase 3) telephone interviews per country:
- France, Germany, Italy, Switzerland, U.K., U.S.A.

Additives vs Subtractives (Random Euro-American sample)

Item	Naturalness (mean) $(0-10$ scale $)$
Milk with natural vitamin D supplement	5.35
Milk with all fat removed (skim)	5.88

N = 6000: France, Germany, Italy, Switzerland, UK, USA

Natural definition: adding vs subtracting (\% mentioning)

	US	France	UK	
Adding	45	32	38	
Subtracting	2	1	2	

Water: Process vs Content

- Logic
- Original Natural Form
- Add or remove something
- Remove what was added or replace what was removed (with same stuff)

natural spring water with no minerals

	Mean Natural $(0-100)$	Mean acceptable $(0-100)$
Spring water with no minerals	92^{a}	91^{a}
Add $.1 \%$ minerals from other spring water	69^{b}	86^{b}
Remove same minerals	62^{c}	83^{b}

a, b and c are significantly different in each column

Some important heuristics

- 1. loss aversion (Kahneman and Tversky)

Kahneman \& Tversky

- Imagine that you win a lovely Cross Pen in a lottery. What is the smallest amount of money that you would accept to sell this pen?
- Imagine a lovely Cross pen. What is the largest amount of money that you would pay to obtain such a pen?

Endowment effect:
 Cross pen given and to give up or to buy

	Lowest sell \$ for owned (median)	Highest buy \$
F07	25	10
F08	40	10
F09	20	10

New pill item

- FORM A
- You have to take pill to treat an acute serious disease that you have. You have a choice of two pills which are equally effective in treating your disease. Pill A has a risk of .00002 of inducing cancer and a risk of .00002 of inducing heart disease. Pill B has a risk of .00001 of inducing cancer and a risk of . 00003 of inducing heart disease.
- FORM B
- You have to take pill to treat an acute serious disease that you have. You have a choice of two pills which are equally effective in treating your disease. Pill A has a risk of .00002 of inducing cancer and a risk of .00002 of inducing heart disease. Pill B has a risk of .00001 of inducing heart disease and a risk of .00003 of inducing cancer.

Pill results F08/F09: \% Prefer $=(.00002$ risk for cancer and heart disease:) vs one risk up and one risk down

Pill \% prefer	2008 $\%$ prefer equal (A)	2009 $\%$ prefer equal (A)
.00001 cancer .00003 heart disease	48%	42%
.00003 cancer .00001 heart disease	83%	82%

Negativity dominance (Rozin \& Royzman, 2001)

- Combinations of negative and positive are more negative than they "should be"
- Negatives are more potent than "equivalent" positives (loss aversion)
- Negative events grow faster in strength as they are approached than do positive events

Negativity Dominance

- Contamination
- Stigma in politics
- Balancing Murders and Saved lives

Framing

- Context, interpretation
- Examples of importance of framing

The wallet question and framing

- You have $\$ 60$ in your wallet. You are going to a theatre and intend to buy a ticket for the admission price of $\$ 20$. As you enter the theatre, you discover that you have lost $\$ 20$; you have only $\$ 40$ in your wallet. Would you pay $\$ 20$ for a ticket?
- Alternate form: $\$ 40$ in wallet and a $\$ 20$ ticket. You find you lost the ticket.
- 1) YES 2) NO

Wallet-ticket framing

lose $\$ 20$ ticket or lose \$20: \% buy ticket

	Lose ticket	Lose \$20
Literature	46	88
F09	64%	84%

Jacket-Calculator item

- Imagine that you are about to purchase a jacket for $\$ 125$ and a calculator for $\$ 25$. The salesman informs you that the jacket you wish to buy is on sale for $\$ 115$ at another branch of the store, located 20 minutes drive away (you have a car). Would you make the trip to the other store?
- Alternate: Calculator on sale for $\$ 15$.
- 1) YES 2) NO

Jacket $\$ 125$ or calculator $\$ 25$ at

 $\$ 10$ discount at 20 min away $\%$ who will drive| | $\$ 125$ to $\$ 115$ | $\$ 25$ to $\$ 15$ |
| :--- | :--- | :--- |
| Literature | $\mathbf{3 2}$ | $\mathbf{7 1}$ |

Framing (Kahneman)

- Economics and Contingent Valuation
- Estimating the cost to society of Exxon Valdez Oil Spill
- How much would you give to clean up 1 mile of the Alaska Coast?
- Times number of people in country or other base
- Problem of framing

Framing

- Choosing a comparison condition
- How good is your marriage?
- Tegmark: $\$ 100,000,000$ for meteorite warning
- $\$.33$ per American
- Grant to every poor, deaf American say 100,000: \$1,000 each
- 10X federal expenditures on opera
- Framing a question

Framing a question

- Do you think the US should (allow/forbid) speech against democracy?
- (very large random sample Americans)
- forbid
allow
- \% yes 25%
\% no
44\%
- Framing
-5% fat or 95% fat free
- Death or estate tax
- Patriot act or limitation of freedom act
- Granola bars

Framing: Presentation of results

MRFIT STUDY 12,000 middle-aged US males followed for seven years

Condition	Highest cholest decile >265	Lowest cholest decile <170
Fatal heart attacks (\%)	1.3%	0.3%

Mr. Fit: \% Fatal heart attacks by highest vs. lowest decile in blood cholesterol 4 times higher risk!!

Mr. Fit: \% Fatal heart attacks by highest vs. lowest decile in blood cholesterol

MRFIT STUDY 12,000 middle-aged US males

Condition	Highest cholest decile >265	Lowest cholest decile <170
Fatal heart attacks (\%)	1.3%	0.3%
No fatal heart attack (\%)	98.7%	99.7%

Mr. Fit: \% NO Fatal heart attacks by highest vs. lowest decile in blood cholesterol

Framing and loss aversion

- Discounts and surcharges
- Risk seeking for losses
- Risk aversion for gains

Framing 1: Loss

- Imagine that the U.S. is preparing for the outbreak of an unusual infectious disease, which is expected to kill 600 people.
- Two alternative programs to combat the disease have been proposed. Assume that the consequences of the programs are as follows:
-

If Program 1 is adopted, 400 people will die

- If Program 2 is adopted, there is a $1 / 3$ probability that
- nobody will die, and a $2 / 3$ probability that 600 people will
- die.
- Which of the programs do you favor? 1 or 2
- RISK TO REDUCE LOSS

Framing 2: Gain

- Imagine that the U.S. is preparing for the outbreak of an unusual infectious disease, which is expected to kill 600 people.
- Two alternative programs to combat the disease have been proposed. Assume that the consequences of the programs are as follows:
- If Program 1 is adopted,
- 200 people will be saved
- If Program 2 is adopted,
- there is a $1 / 3$ probability that 600 will be saved, and a $2 / 3$ probability that nobody will be saved
-

Which of the programs do you favor? 1 or 2

- RISK TO REDUCE GAIN

Risk and loss aversion

 200 save or $1 / 3$ all save, $2 / 3$ none vs 400 die or $1 / 3$ no die, $2 / 3$ all die| \% no risk | Save frame | Die frame |
| :--- | :--- | :--- |
| Literature | 76 | 13 |
| F09 | 72 | 33 |

Short-sightedness

- The ancestral environment
- Succumbing to temptation
- Dominance of the moment:
- Smoking, chocolate, procrastination, going into the cold ocean

Short sightedness F08: $\$ 100$ vs $\$ 105$

	\% choose \$105	Interest rate
A. \$100 now or $\$ 105$ in one week	64%	$>250 \%$
B. $\$ 100$ in one year $\$ 105$ in one year and one week	82%	small

$$
\mathrm{A} \text { vs } \mathrm{B} \mathrm{p}<.001
$$

Short-sightedness

- Succumbing to temptation
- Procrastination
- Buying insurance
- Examples of short-sightedness
- Short sightedness in institutions: Singapore
- The problem with democracies and frequent elections
- Capitalism: The problem with stockholders and quarterly returns in public (vs private) corporations

Mole hill effect

- Putting on a seat belt
- Getting frequent flyer membership
- Filing for rebates

Enhancers of public concern re disasters (Paul Slovic)

- Low likelihood
- Unpredictable
- Sudden
- Catastrophic
- Human caused

The response to 9/11

- Low likelihood disaster
- Exaggerated by
- Unpredictable
- Sudden
- Human caused
- (vs. influenza epidemic)
- 1918 FLU killed 10-20 million
- Need for certainty rather than low risk
- Over-reaction re insecurity and security measures (e.g., anthrax scare)

The mortgage meltdown

- Short sightedness
- Framing as distributed risk (like jacket discount, looking at distributed risk rather than debt ratio)
- Social influence

Governments

- Made of people
- Problems with frequent elections
- Getting re-elected
- e.g. raising taxes, cutting entitlements
- All points relevant: endowment effect (loss aversion)
- Short sightedness most critical

Some principles for constructing the world

- Non-random
- Bias to causes
- Correlation to causation
- Monotonicity
- Categorizing continua
- Single variable causation

Ways to help

- Reframing
- Avoiding short sightedness with:
- Commitment devices
- Incentives
- Default options
- EDUCATION
- How do you know?

END

